Financial integration and growth in a risky world

Nicolas Coeurdacier Hélène Rey Pablo Winant

SciencesPo and CEPR

London Business School, CEPR and NBER

Paris School of Economics
Introduction

- Where do gains from international financial integration come from?
- Conventional view:
 - efficient allocation of capital: capital flows to the developing country
 - risk sharing (reduces volatility of aggregate consumption)
- Other explanations
 - Financial markets development
 - Institutional development
 - Macroeconomic discipline
A simple thought experiment

- In a stochastic neoclassical setup
- A very risky country (5% std dev productivity shocks)
- A relatively safer country (2.5% std dev productivity shocks)
- Risky country starts with initial capital scarcity (30%)
A simple thought experiment

- How big are the gains from financial integration?
- Who benefits most from them?
- What is the direction of capital flows / debt accumulation?
A simple thought experiment

- How big are the gains from financial integration?
 - Small

- Who benefits most from them?
 - No big winner

- What is the direction of capital flows / debt accumulation?
 - Initial inflows, then outflows. Long run precautionary savings by risky country.
Explanations

- Allocative efficiency of financial integration
 - Gourinchas and Jeanne (2006). Small gains (1%)
- Business cycle and risk sharing
- Need an integrated framework.
Our contribution

- Reassess these gains in a
 - stochastic
 - general equilibrium
 - neoclassical growth model
 - with incomplete markets

- Use a global approximation methods to study the transition path towards the long run equilibrium

- Emphasize relation between risk and capital accumulation
Findings

- No big winner
- Welfare gains are small
 - unevenly distributed across time
- Buildup of precautionary assets by risky country
- Some calibrations generate capital flow reversal or growth impeding integration
Literature review

- Theoretical literature
 - Allocative efficiency:
 - Gourinchas and Jeanne (2006)
 - Stochastic models with aggregate uncertainty
 - Van Wincoop (1999), Lewis (1999)
 - Growth models with idiosyncratic uncertainty
 - Angeletos and Panousi (2012)
 - Corneli (2010)

- Empirical literature
The model

- 2 symmetric countries with a stochastic neoclassical structure
- Production:
 - Productivity shocks:
 \[\log (a_t) = \rho \log (a_{t-1}) + \epsilon_t \]
 - Production:
 \[y_t = a_t k_t^\theta \]
 - Investment with convex adjustment costs
 \[k_t = (1 - \delta) k_{t-1} + k_{t-1} \varphi \left(\frac{i_{t-1}}{k_{t-1}} \right) \]
- Optimization problem:
 \[\max W_0 = E_t \left[\sum_{t \geq 0} \beta^t \left(\frac{c_t}{1 - \gamma} \right)^{1-\gamma} \right] \]
The model

- **Budget equation:**

 \[c_t = y_t - i_t + b_t p_t - b_{t-1} \]

 - \(b_t \): promise to repay 1 next period
 - \(p_t = \frac{1}{r_t} \): price of the bond

- **Optimal bond holdings**

 \[p_t = E_t \left[\left(\frac{c_{t+1}}{c_t} \right)^{-\gamma} \right] \]

- **Special cases:**

 - \(b_t = 0 \): autarky
 - \(\frac{1}{p_t} = \bar{r}^w \): small open economy
 - \(\phi(.) = \delta \): endowment economies
Solution methods

- global solution: policy function iteration
- why not standard perturbations (as usual in international macro)?
 - big shocks take us away from deterministic steady-state
 - perturbation solutions of order < 3 miss the stabilizing effect of precautionary savings
 - portfolio choice needs special treatment
- problems with projections:
Solution methods

- **global solution**: policy function iteration
- why not standard perturbations (as usual in international macro)?
 - big shocks take us away from deterministic steady-state
 - perturbation solutions of order < 3 miss the stabilizing effect of precautionary savings
 - portfolio choice needs special treatment
- problems with projections:
 - no natural bounds for debt \rightarrow use solution from second order perturbation to get 2 standard deviations after 50 periods
Solution methods

- global solution: policy function iteration
- why not standard perturbations (as usual in international macro) ?
 - big shocks take us away from deterministic steady-state
 - perturbation solutions of order < 3 miss the stabilizing effect of precautionary savings
 - portfolio choice needs special treatment
- problems with projections:
 - no natural bounds for debt \rightarrow use solution from second order perturbation to get 2 standard deviations after 50 periods
 - high number of states (≥ 5) \rightarrow smolyak colocation to reduce number of points
Integration experiment

- Integration experiment
 - choose initial level of capital
 - simulate consumption in autarky \(b_t = 0 \)
 - simulate consumption in the bond economy

- Normalize welfare in terms of deterministic consumption

\[
W_0 = E_t \left[\sum_{t \geq 0} \beta^t \frac{(c_t)^{1-\gamma}}{1-\gamma} \right]
= \text{def} \sum_{t \geq 0} \beta^t \frac{(\bar{c})^{1-\gamma}}{1-\gamma}
\]

- Welfare gains:

\[
\bar{c}_{\text{integration}} - \bar{c}_{\text{autarky}}
\]
Calibration

- Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount rate</td>
<td>β 0.96</td>
</tr>
<tr>
<td>Relative risk aversion</td>
<td>γ 4</td>
</tr>
<tr>
<td>Capital share</td>
<td>θ 0.3</td>
</tr>
<tr>
<td>Depreciation rate</td>
<td>δ 0.1</td>
</tr>
<tr>
<td>Capital adjustment costs</td>
<td>s.t. $\sigma^i = 3\sigma^y$</td>
</tr>
</tbody>
</table>

- Productivity shocks
 - volatility matches the groups of the 50% riskiest country vs. 50% safest

<table>
<thead>
<tr>
<th>Autocorrelation of shocks</th>
<th>Autocorrelation</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risky economy</td>
<td>0.9</td>
<td>5%</td>
</tr>
<tr>
<td>Safe economy</td>
<td>0.9</td>
<td>2.5%</td>
</tr>
</tbody>
</table>
The riskless case: partial equilibrium

- no shocks
- interest rate $\frac{1}{p_t} = r^w = \frac{1}{\beta}$
- capital starts 30% below steady-state
The riskless case: partial equilibrium
The riskless case: partial equilibrium

- No precautionary savings in autarky:
 - only initial level of capital matters
- Standard argument:
 - capital goes where returns are higher
- But
 - gains from financial integration are transitory only
 - integration speeds up transition towards steady-state level of capital
 - debt must be repaid in the long run
The riskless case: general equilibrium

- no shocks
- capital starts 30% below steady-state
- rest of the world has the same size than the country
The riskless case: general equilibrium
Riskless case: welfare gains

- welfare gains:

<table>
<thead>
<tr>
<th>Country</th>
<th>Rest of the world</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial</td>
<td>1.08%</td>
</tr>
<tr>
<td>General</td>
<td>0.21%</td>
</tr>
</tbody>
</table>

- in partial equilibrium:
 - welfare costs are small because they are transitory

- in general equilibrium
 - welfare gains must be shared between the two countries
 - rest of the world was making welfare losses to maintain fixed interest rate
 - gains were overestimated in the partial equilibrium settings!
Business cycles

Endowments

- Remove capital and add shocks:

<table>
<thead>
<tr>
<th></th>
<th>Autocorrelation</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risky country</td>
<td>0.9</td>
<td>0.05</td>
</tr>
<tr>
<td>Safe country</td>
<td>0.9</td>
<td>0.025</td>
</tr>
</tbody>
</table>

- Volatilities roughly match volatility of the 50% more/less volatile countries

- Another motive for financial integration: consumption smoothing
 - intratemporal reduction in volatility
 - intertemporal reallocation of consumption
Endowments
Endowments

- interest rate close to safer country:
 - aggregate risk is reduced
- risky country accumulates bonds as precautionary savings
- debt converge to the "risky steady-state" in the long run
 - no unit root
 - cf. household finance and buffer stock of savings
 - precautionary savings due to market incompleteness
 - local approximation around risky steady-state (Coeurdacier et al. 2012)
Endowments

<table>
<thead>
<tr>
<th>Welfare gains</th>
<th>Country</th>
<th>Rest of the world</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial integration</td>
<td>0.62%</td>
<td>0.52%</td>
</tr>
<tr>
<td>Complete markets</td>
<td>0.6%</td>
<td>0.65%</td>
</tr>
<tr>
<td>Complete markets $\gamma = 16$</td>
<td>2.5%</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

- Welfare gains of integration are small and approximately evenly distributed
- Upper bounds of welfare gains
 - Lucas computation
 - Complete markets
- Different types of welfare gains? How do they interact?
Growth model with aggregate uncertainty

Full model

- Capital starts at the autarky level
- At risky steady-state
 - where economy converges in the absence of shocks
Baseline
Full model

<table>
<thead>
<tr>
<th>Risky steady-states</th>
<th>k</th>
<th>k^{ROW}</th>
<th>r</th>
<th>r^{ROW}</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autarky</td>
<td>3.07</td>
<td>2.95</td>
<td>3.33%</td>
<td>3.95%</td>
<td></td>
</tr>
<tr>
<td>Partial integration</td>
<td>2.94</td>
<td>2.98</td>
<td>3.95%</td>
<td>3.95%</td>
<td>−6.41</td>
</tr>
</tbody>
</table>

- With risk and capital there is precautionary savings in autarky
- Integration partly removes this precautionary savings
 - another potential source of welfare gains
 - affects long run accumulation of capital / income

<table>
<thead>
<tr>
<th>Country</th>
<th>Welfare gains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>0.24%</td>
</tr>
<tr>
<td>Rest of the world</td>
<td>0.30%</td>
</tr>
</tbody>
</table>
4 different sources of welfare gains

- intratemporal risk-sharing
- intertemporal savings
- efficient capital allocation
- long-term capital level

- Generate interesting patterns for the dynamics
Full model + capital scarcity

- Capital starts at -30% in risky country
- Capital starts at the autarky level in ROW
Risky capital + capital scarcity
Welfare gains

To account for these patterns:
- short term vs. long term gains
- deterministic vs. stochastic gains

\[
W_0 = E_0 \left[\sum_{t \geq 0} \beta^t \frac{(c_t)^{1-\gamma}}{1-\gamma} \right]
\]

\[
= E_0 \left[\sum_{t \leq T^s} \beta^t \frac{(c_t)^{1-\gamma}}{1-\gamma} \right] + E_0 \left[\sum_{t > T^s} \beta^t \frac{(c_t)^{1-\gamma}}{1-\gamma} \right]
\]

short term

\[
= \sum_{t \geq 0} \beta^t \frac{(D_0 c_t)^{1-\gamma}}{1-\gamma} + \sum_{t \geq 0} \beta^t E_0 \left[\frac{(c_t)^{1-\gamma}}{1-\gamma} - \frac{(D_0 c_t)^{1-\gamma}}{1-\gamma} \right]
\]

deterministic stochastic

short-term: \(T^s = 20 \) periods
Welfare gains

<table>
<thead>
<tr>
<th>Percentage gains</th>
<th>Short term</th>
<th></th>
<th>Long term</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Country</td>
<td>ROW</td>
<td>Country</td>
</tr>
<tr>
<td>Riskless (scarce)</td>
<td>stoch</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>det</td>
<td>2.04</td>
<td>-1.74</td>
<td>0.21</td>
</tr>
<tr>
<td>Baseline</td>
<td>stoch</td>
<td>-0.67</td>
<td>1.25</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>det</td>
<td>-0.74</td>
<td>1.14</td>
<td>-0.09</td>
</tr>
<tr>
<td>Capital scarce</td>
<td>stoch</td>
<td>0.06</td>
<td>0.04</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>det</td>
<td>1.19</td>
<td>-0.67</td>
<td>1.26</td>
</tr>
<tr>
<td>Big safe country</td>
<td>stoch</td>
<td>-0.56</td>
<td>0.66</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>det</td>
<td>-0.66</td>
<td>0.59</td>
<td>-0.06</td>
</tr>
<tr>
<td>Risk aversion $\gamma = 6$</td>
<td>stoch</td>
<td>-0.98</td>
<td>2.37</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>det</td>
<td>-1.11</td>
<td>2.24</td>
<td>-0.34</td>
</tr>
</tbody>
</table>
Conclusion

- When asked about benefits to financial integration policy makers mention: risk sharing and allocative efficiency. We show that none of those really matter.
- Benchmark model to relate growth effects before and after financial integration to volatility and size of countries. Capital flows reversals.
- Calls for empirical investigations!