Technology and the Era of the Mass Army

Massimiliano Onorato
IMT Lucca

Kenneth Scheve
Yale University

David Stasavage
New York University

March 2012
Motivation: The Conscription of Wealth

- What are the economic and political conditions that explain long-run trends in progressive taxation?
- One idea: mass warfare played a bigger role than democracy according to Scheve and Stasavage (2012, APSR) as well as Scheve and Stasavage (2010).
Motivation: The Conscription of Wealth

- What are the economic and political conditions that explain long-run trends in progressive taxation?
- One idea: mass warfare played a bigger role than democracy according to Scheve and Stasavage (2012, APSR) as well as Scheve and Stasavage (2010).
What factors have determined the size of armies that great powers have fielded over time?

What factors have influenced the fraction of citizens that great powers have mobilized for war?
The Main Question(s) for This Paper

- What factors have determined the size of armies that great powers have fielded over time?
- What factors have influenced the fraction of citizens that great powers have mobilized for war?
Over the long run, changes in technologies for transport and communications have governed the size of armies that it has been feasible and desirable to mobilize.

We emphasize two technologies as being particularly important in the history of great power conflicts:
The Argument

- Over the long run, changes in technologies for transport and communications have governed the size of armies that it has been feasible and desirable to mobilize.
- We emphasize two technologies as being particularly important in the history of great power conflicts:
 - Transporting Men by Railway
Over the long run, changes in technologies for transport and communications have governed the size of armies that it has been feasible and desirable to mobilize.

We emphasize two technologies as being particularly important in the history of great power conflicts:

- Transporting Men by Railway
- Remote Delivery of Explosive Force
Over the long run, changes in technologies for transport and communications have governed the size of armies that it has been feasible and desirable to mobilize.

We emphasize two technologies as being particularly important in the history of great power conflicts:

- Transporting Men by Railway
- Remote Delivery of Explosive Force
Other Factors

- **State/Fiscal Capacity** - wealth and bureaucracy
- **Political Rights** - citizenship rights and extension of the suffrage
Other Factors

- State/Fiscal Capacity - wealth and bureaucracy
- Political Rights - citizenship rights and extension of the suffrage
- Nationalism - invention of idea of "the nation in arms." Political scientists see French Revolution as a turning point.
Other Factors

- State/Fiscal Capacity - wealth and bureaucracy
- Political Rights - citizenship rights and extension of the suffrage
- Nationalism - invention of idea of "the nation in arms." Political scientists see French Revolution as a turning point.
We created a data set measuring *Military Size* and *Military Mobilization* in great power states from 1600 to 2000.

Great power states and years in sample defined by Levy (1983). Includes Austria-Hungary (1600-1918), China (1949-2000), France (1600-2000), Italy (1861-1943), Japan (1905-1945), Netherlands (1609-1713), Ottoman Empire (1600-1699), Prussia/Germany/West Germany (1740-2000), Russia/Soviet Union (1721-2000), Spain (1600-1808), Sweden (1617-1721), United Kingdom (1600-2000), United States (1898-2000).
We created a data set measuring *Military Size* and *Military Mobilization* in great power states from 1600 to 2000.

Great power states and years in sample defined by Levy (1983). Includes Austria-Hungary (1600-1918), China (1949-2000), France (1600-2000), Italy (1861-1943), Japan (1905-1945), Netherlands (1609-1713), Ottoman Empire (1600-1699), Prussia/Germany/West Germany (1740-2000), Russia/Soviet Union (1721-2000), Spain (1600-1808), Sweden (1617-1721), United Kingdom (1600-2000), United States (1898-2000).

Sources: 1600-1815 extensive review of historiography for each country along with some primary sources, 1816-2000 primary source is Correlates of War (2010). See appendix for complete description.
We created a data set measuring *Military Size* and *Military Mobilization* in great power states from 1600 to 2000.

Great power states and years in sample defined by Levy (1983). Includes Austria-Hungary (1600-1918), China (1949-2000), France (1600-2000), Italy (1861-1943), Japan (1905-1945), Netherlands (1609-1713), Ottoman Empire (1600-1699), Prussia/Germany/West Germany (1740-2000), Russia/Soviet Union (1721-2000), Spain (1600-1808), Sweden (1617-1721), United Kingdom (1600-2000), United States (1898-2000).

Sources: 1600-1815 extensive review of historiography for each country along with some primary sources, 1816-2000 primary source is Correlates of War (2010). See appendix for complete description.
War Mobilization Data, 1600-2000

Military Mobilization in United Kingdom

Year

Military Size, Thousands

Military Mobilization

Military Size (in Thousands)

Military Mobilization

1600 1700 1800 1900 2000

0 1000 2000 3000 4000 5000

0 0.02 0.04 0.06 0.08 0.1
War Mobilization Data, 1600-2000

and Settings/david.stasavage/Mes documents/Dropbox/Paris work/Mass army/Kenslides/russiasovietunionbasic2.pdf
<table>
<thead>
<tr>
<th>Century</th>
<th>Military Size</th>
<th>Observations</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>17th Century</td>
<td>Military Size</td>
<td>69</td>
<td>95.370</td>
<td>62.225</td>
<td>13.000</td>
<td>362.000</td>
</tr>
<tr>
<td></td>
<td>Military Mobilization</td>
<td>69</td>
<td>0.018</td>
<td>0.025</td>
<td>0.002</td>
<td>0.190</td>
</tr>
<tr>
<td>18th Century</td>
<td>Military Size</td>
<td>152</td>
<td>179.559</td>
<td>102.351</td>
<td>12.725</td>
<td>732.474</td>
</tr>
<tr>
<td></td>
<td>Military Mobilization</td>
<td>152</td>
<td>0.016</td>
<td>0.011</td>
<td>0.002</td>
<td>0.082</td>
</tr>
<tr>
<td>19th Century</td>
<td>Military Size</td>
<td>80</td>
<td>481.516</td>
<td>324.011</td>
<td>11.134</td>
<td>2000.000</td>
</tr>
<tr>
<td></td>
<td>Military Mobilization</td>
<td>80</td>
<td>0.017</td>
<td>0.009</td>
<td>0.002</td>
<td>0.054</td>
</tr>
<tr>
<td>20th Century</td>
<td>Military Size</td>
<td>142</td>
<td>2762.583</td>
<td>2546.014</td>
<td>125.923</td>
<td>12500.000</td>
</tr>
<tr>
<td></td>
<td>Military Mobilization</td>
<td>142</td>
<td>0.034</td>
<td>0.036</td>
<td>0.002</td>
<td>0.161</td>
</tr>
</tbody>
</table>

Table: Military Size and Mobilization by Century, War Years.
Methods of Recruitment, 1600-2000

<table>
<thead>
<tr>
<th>Country</th>
<th>Great power?</th>
<th>Conscription?</th>
<th>Universal?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>1600-1918</td>
<td>1771-1918</td>
<td>1868</td>
</tr>
<tr>
<td>Italy</td>
<td>1861-1943</td>
<td>1861-1943</td>
<td>1907</td>
</tr>
<tr>
<td>Japan</td>
<td>1905-1945</td>
<td>1905-1945</td>
<td>1873</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1609-1713</td>
<td>no</td>
<td>never</td>
</tr>
<tr>
<td>Ottoman Empire</td>
<td>1600-1699</td>
<td>1600-1666</td>
<td>never</td>
</tr>
<tr>
<td>Prussia</td>
<td>1740-2000</td>
<td>1740-2000</td>
<td>1813</td>
</tr>
<tr>
<td>Russia</td>
<td>1721-2000</td>
<td>1721-2000</td>
<td>1874</td>
</tr>
<tr>
<td>Spain</td>
<td>1600-1808</td>
<td>1630-1645, 1704-1776</td>
<td>never</td>
</tr>
<tr>
<td>Sweden</td>
<td>1617-1721</td>
<td>1617-1682</td>
<td>never</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1600-2000</td>
<td>1916-1918, 1939-1960</td>
<td>1916</td>
</tr>
<tr>
<td>United States</td>
<td>1898-2000</td>
<td>1917-18, 1940-73</td>
<td>1917</td>
</tr>
</tbody>
</table>

Table: Military Recruitment
Sample. Pooled data includes all 443 country years for which we have data on military size and a great power country is at war.

Model. OLS regression of Military Size or Military Mobilization on country fixed effects and break points corresponding to potential factors influencing mobilization with country-clustered standard errors.
Pooled Data Break Points

- **Sample.** Pooled data includes all 443 country years for which we have data on military size and a great power country is at war.

- **Model.** OLS regression of *Military Size* or *Military Mobilization* on country fixed effects and break points corresponding to potential factors influencing mobilization with country-clustered standard errors.

- **Railways.** 1859 first year in which railroads used in a significant way in military conflict (Pratt 1915). *D1859*
Sample. Pooled data includes all 443 country years for which we have data on military size and a great power country is at war.

Model. OLS regression of Military Size or Military Mobilization on country fixed effects and break points corresponding to potential factors influencing mobilization with country-clustered standard errors.

Railways. 1859 first year in which railroads used in a significant way in military conflict (Pratt 1915).

Pooled Data Break Points

- **Sample.** Pooled data includes all 443 country years for which we have data on military size and a great power country is at war.

- **Model.** OLS regression of *Military Size* or *Military Mobilization* on country fixed effects and break points corresponding to potential factors influencing mobilization with country-clustered standard errors.

- **Railways.** 1859 first year in which railroads used in a significant way in military conflict (Pratt 1915). *D1859*

- **Nationalism.** French Revolution as structural break. *D1789*
Sample. Pooled data includes all 443 country years for which we have data on military size and a great power country is at war.

Model. OLS regression of Military Size or Military Mobilization on country fixed effects and break points corresponding to potential factors influencing mobilization with country-clustered standard errors.

Railways. 1859 first year in which railroads used in a significant way in military conflict (Pratt 1915). D_{1859}

Nationalism. French Revolution as structural break. D_{1789}
Table: *Military Size and Mobilization in Great Power Wars, 1600-2000.*

<table>
<thead>
<tr>
<th></th>
<th>Military Size</th>
<th>Military Mobilization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>D_{1789}</td>
<td>-23.930</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(138.442)</td>
<td>(0.002)</td>
</tr>
<tr>
<td></td>
<td>0.866</td>
<td>0.263</td>
</tr>
<tr>
<td>D_{1859}</td>
<td>2030.983</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>(545.037)</td>
<td>(0.004)</td>
</tr>
<tr>
<td></td>
<td>0.003</td>
<td>0.000</td>
</tr>
<tr>
<td>D_{1970}</td>
<td>-1166.186</td>
<td>-0.020</td>
</tr>
<tr>
<td></td>
<td>(448.374)</td>
<td>(0.006)</td>
</tr>
<tr>
<td></td>
<td>0.023</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Country Fixed Effects: Yes
Number of Observations: 443

Table: *Military Size and Mobilization in Great Power Wars, 1600-2000.*
Sample. Pooled data includes 443 country years for which we have data on military size and a great power country is at war.

Model. OLS regression of Military Size or Military Mobilization on country fixed effects; break points corresponding to potential factors influencing mobilization; direct measures of railroad expansion, cruise missile development with country-clustered standard errors.
Pooled Data - No Controls

- **Sample.** Pooled data includes 443 country years for which we have data on military size and a great power country is at war.

- **Model.** OLS regression of *Military Size* or *Military Mobilization* on country fixed effects; break points corresponding to potential factors influencing mobilization; direct measures of railroad expansion, cruise missile development with country-clustered standard errors.

- **Railways.** *Railroad Track* is equal to the length of the railroad track available to the public in each country measure in kilometers.
Sample. Pooled data includes 443 country years for which we have data on military size and a great power country is at war.

Model. OLS regression of Military Size or Military Mobilization on country fixed effects; break points corresponding to potential factors influencing mobilization; direct measures of railroad expansion, cruise missile development with country-clustered standard errors.

Railways. Railroad Track is equal to the length of the railroad track available to the public in each country measure in kilometers.

Railways. Railroad Track Area is equal to Railroad Track divided by geographic area measured in square kilometers.
Sample. Pooled data includes 443 country years for which we have data on military size and a great power country is at war.

Model. OLS regression of *Military Size* or *Military Mobilization* on country fixed effects; break points corresponding to potential factors influencing mobilization; direct measures of railroad expansion, cruise missile development with country-clustered standard errors.

Railways. *Railroad Track* is equal to the length of the railroad track available to the public in each country measure in kilometers.

Railways. *Railroad Track Area* is equal to *Railroad Track* divided by geographic area measured in square kilometers.

Remote delivery. *Cruise Missile* is equal to 0 for each year before a country acquires a cruise missile and 1 for each after acquisition.
Sample. Pooled data includes 443 country years for which we have data on military size and a great power country is at war.

Model. OLS regression of Military Size or Military Mobilization on country fixed effects; break points corresponding to potential factors influencing mobilization; direct measures of railroad expansion, cruise missile development with country-clustered standard errors.

Railways. Railroad Track is equal to the length of the railroad track available to the public in each country measure in kilometers.

Railways. Railroad Track Area is equal to Railroad Track divided by geographic area measured in square kilometers.

Remote delivery. Cruise Missile is equal to 0 for each year before a country acquires a cruise missile and 1 for each after acquisition.
Table: Military Size and Mobilization in Great Power Wars, 1600-2000.

<table>
<thead>
<tr>
<th></th>
<th>Military Size</th>
<th>Military Mobilization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>D1789</td>
<td>96.674</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(83.746)</td>
<td>(0.002)</td>
</tr>
<tr>
<td></td>
<td>0.271</td>
<td>0.135</td>
</tr>
<tr>
<td>D1859</td>
<td>219.159</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>(477.470)</td>
<td>(0.004)</td>
</tr>
<tr>
<td></td>
<td>0.654</td>
<td>0.012</td>
</tr>
<tr>
<td>D1970</td>
<td>353.256</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(339.786)</td>
<td>(0.004)</td>
</tr>
<tr>
<td></td>
<td>0.319</td>
<td>0.546</td>
</tr>
<tr>
<td>Railroad Track</td>
<td>43707.090</td>
<td>0.224</td>
</tr>
<tr>
<td></td>
<td>(11831.450)</td>
<td>(0.106)</td>
</tr>
<tr>
<td></td>
<td>0.003</td>
<td>0.056</td>
</tr>
<tr>
<td>Cruise Missile</td>
<td>-427.278</td>
<td>-0.013</td>
</tr>
<tr>
<td></td>
<td>(271.825)</td>
<td>(0.003)</td>
</tr>
<tr>
<td></td>
<td>0.142</td>
<td>0.000</td>
</tr>
<tr>
<td>Country Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>443</td>
<td>443</td>
</tr>
</tbody>
</table>
Model. OLS regression of *Military Size* or *Military Mobilization* on country fixed effects; measures of railroad expansion, cruise missile, fiscal capacity, political rights, and country size; and various functions of time with country-clustered standard errors.

Fiscal capacity. *GDP per capita* as proxy. Also used variable coded based on date of first census.
Model. OLS regression of Military Size or Military Mobilization on country fixed effects; measures of railroad expansion, cruise missile, fiscal capacity, political rights, and country size; and various functions of time with country-clustered standard errors.

Fiscal capacity. GDP per capita as proxy. Also used variable coded based on date of first census.

Political rights. Democracy is equal to one if legislature is elected in free multi-party elections, executive is either directly or indirectly elected, and at least half of adult males have the right to vote.
Model. OLS regression of Military Size or Military Mobilization on country fixed effects; measures of railroad expansion, cruise missile, fiscal capacity, political rights, and country size; and various functions of time with country-clustered standard errors.

Fiscal capacity. GDP per capita as proxy. Also used variable coded based on date of first census.

Political rights. Democracy is equal to one if legislature is elected in free multi-party elections, executive is either directly or indirectly elected, and at least half of adult males have the right to vote.

Model. OLS regression of Military Size or Military Mobilization on country fixed effects; measures of railroad expansion, cruise missile, fiscal capacity, political rights, and country size; and various functions of time with country-clustered standard errors.

Fiscal capacity. GDP per capita as proxy. Also used variable coded based on date of first census.

Political rights. Democracy is equal to one if legislature is elected in free multi-party elections, executive is either directly or indirectly elected, and at least half of adult males have the right to vote.

Pooled Data - With Controls - Results

- *Railroad Track* remains positively and significantly correlated with *Military Size* and *Military Mobilization* and the substantive magnitude is almost unchanged.

- *Railroad Track Area* is positive but not statistically for *Military Size* but remains positively and significantly correlated with *Military Mobilization*.
- *Railroad Track* remains positively and significantly correlated with *Military Size* and *Military Mobilization* and the substantive magnitude is almost unchanged.

- *Railroad Track Area* is positive but not statistically for *Military Size* but remains positively and significantly correlated with *Military Mobilization*.

- *Cruise Missile* estimate is negative and statistically significant with a much larger substantive magnitude.
Railroad Track remains positively and significantly correlated with Military Size and Military Mobilization and the substantive magnitude is almost unchanged.

Railroad Track Area is positive but not statistically for Military Size but remains positively and significantly correlated with Military Mobilization.

Cruise Missile estimate is negative and statistically significant with a much larger substantive magnitude.

Fairly robust evidence of significant correlation between GDP per capita and Military Size. No evidence of correlation between Democracy and Military Size.
Railroad Track remains positively and significantly correlated with *Military Size* and *Military Mobilization* and the substantive magnitude is almost unchanged.

Railroad Track Area is positive but not statistically for *Military Size* but remains positively and significantly correlated with *Military Mobilization*.

Cruise Missile estimate is negative and statistically significant with a much larger substantive magnitude.

Fairly robust evidence of significant correlation between *GDP per capita* and *Military Size*. No evidence of correlation between *Democracy* and *Military Size*.

Evidence of significant correlation between *Democracy* and *Military Mobilization*. Little evidence of correlation between *GDP per capita* and *Military Mobilization*.
Railroad Track remains positively and significantly correlated with Military Size and Military Mobilization and the substantive magnitude is almost unchanged.

Railroad Track Area is positive but not statistically for Military Size but remains positively and significantly correlated with Military Mobilization.

Cruise Missile estimate is negative and statistically significant with a much larger substantive magnitude.

Fairly robust evidence of significant correlation between GDP per capita and Military Size. No evidence of correlation between Democracy and Military Size.

Evidence of significant correlation between Democracy and Military Mobilization. Little evidence of correlation between GDP per capita and Military Mobilization.
Was it Just the Two World Wars?

- There could have been many factors common to each or both that might bias the result
- Remove WWI - Results stay basically the same (RR coefficient 20% lower in magnitude)
Was it Just the Two World Wars?

- There could have been many factors common to each or both that might bias the result
- Remove WWI - Results stay basically the same (RR coefficient 20% lower in magnitude)
- Remove WWII - Results stay basically the same (RR coefficient 20% lower in magnitude)
Was it Just the Two World Wars?

- There could have been many factors common to each or both that might bias the result.
- Remove WWI - Results stay basically the same (RR coefficient 20% lower in magnitude).
- Remove WWII - Results stay basically the same (RR coefficient 20% lower in magnitude).
- Remove both - RR coefficient still statistically significant, but coefficient 60% smaller.
Was it Just the Two World Wars?

- There could have been many factors common to each or both that might bias the result
- Remove WWI - Results stay basically the same (RR coefficient 20% lower in magnitude)
- Remove WWII - Results stay basically the same (RR coefficient 20% lower in magnitude)
- Remove both - RR coefficient still statistically significant, but coefficient 60% smaller.
Other Robustness Tests

- Nuclear weapons
- Alternative measures of fiscal capacity—*Census, Taxes, Spending*
Other Robustness Tests

- Nuclear weapons
- Alternative measures of fiscal capacity—Census, Taxes, Spending
- Country time trends
Other Robustness Tests

- Nuclear weapons
- Alternative measures of fiscal capacity—*Census, Taxes, Spending*
- Country time trends
The story we would like to tell is that this correlation reflects causal effect of technological change on military size and mobilization.

Maybe...but railroads may have been built to allow for bigger armies and this policy choice may have been driven by other unobserved factors besides railroad technology.
The story we would like to tell is that this correlation reflects causal effect of technological change on military size and mobilization.

Maybe...but railroads may have been built to allow for bigger armies and this policy choice may have been driven by other unobserved factors besides railroad technology.
Did states build railroads so that they could field larger armies?

Generally, not a lot of evidence that this is an important factor in railroad track development.
Did states build railroads so that they could field larger armies?

Generally, not a lot of evidence that this is an important factor in railroad track development.
Interpretation

- RR mostly privately owned (93% in 1860, 82% in 1880, 74% in 1900)
- When governments had security concerns, they usually nationalized rather than built new track (Bogart, 2009).
Interpretation

- RR mostly privately owned (93% in 1860, 82% in 1880, 74% in 1900)
- When governments had security concerns, they usually nationalized rather than built new track (Bogart, 2009).
- Countries that had substantial nationalizations had less subsequent investment and slower network growth (Bogart, 2009).
Interpretation

- RR mostly privately owned (93% in 1860, 82% in 1880, 74% in 1900)
- When governments had security concerns, they usually nationalized rather than built new track (Bogart, 2009).
- Countries that had substantial nationalizations had less subsequent investment and slower network growth (Bogart, 2009).

Caveats
Interpretation

- RR mostly privately owned (93% in 1860, 82% in 1880, 74% in 1900)
- When governments had security concerns, they usually nationalized rather than built new track (Bogart, 2009).
- Countries that had substantial nationalizations had less subsequent investment and slower network growth (Bogart, 2009).
- Caveats
 - Privately-owned rails could be for military purposes through network planning/regulation and subsidies.
Interpretation

- RR mostly privately owned (93% in 1860, 82% in 1880, 74% in 1900)
- When governments had security concerns, they usually nationalized rather than built new track (Bogart, 2009).
- Countries that had substantial nationalizations had less subsequent investment and slower network growth (Bogart, 2009).

Caveats

- Privately-owned rails could be for military purposes through network planning/regulation and subsidies.
- For some countries, government ownership was eventually dominant (e.g. Germany) though our results are robust to dropping these cases.
Interpretation

- RR mostly privately owned (93% in 1860, 82% in 1880, 74% in 1900)
- When governments had security concerns, they usually nationalized rather than built new track (Bogart, 2009).
- Countries that had substantial nationalizations had less subsequent investment and slower network growth (Bogart, 2009).

Caveats

- Privately-owned rails could be for military purposes through network planning/regulation and subsidies.
- For some countries, government ownership was eventually dominant (e.g. Germany) though our results are robust to dropping these cases.
Further Evidence from Conscription Regimes

- Technology → optimal army size → method of recruitment
- OLS estimates generally show positive relationship between railroad measures and Universal Conscription but not non-universal Conscription
Further Evidence from Conscription Regimes

- Technology \rightarrow optimal army size \rightarrow method of recruitment
- OLS estimates generally show positive relationship between railroad measures and *Universal Conscription* but not non-universal *Conscription*
Nine Years' War
War of Austrian Succession
Revolutionary Wars
Napoleonic Wars
Franco-Prussian War
WWI
WWII
17th century time of dramatic growth in French army and mobilization—362k men in Nine Years’ War suggests a roughly 8x increase over the century.

Army size and mobilization did increase with the French Revolution and Napoleonic Wars—revolutionary army in 1794 about 732k soldiers consisting of 0.027 of the population.
Military Mobilization in France–Key Patterns

- 17th century time of dramatic growth in French army and mobilization—362k men in Nine Years’ War suggests a roughly 8x increase over the century.

- Army size and mobilization did increase with the French Revolution and Napoleonic Wars—revolutionary army in 1794 about 732k soldiers consisting of 0.027 of the population.

- Striking break is of course mobilization for WWI and WWII—5 million soldiers and over 15 percent of population in 1918
17th century time of dramatic growth in French army and mobilization—362k men in Nine Years’ War suggests a roughly 8x increase over the century.

Army size and mobilization did increase with the French Revolution and Napoleonic Wars—revolutionary army in 1794 about 732k soldiers consisting of 0.027 of the population.

Striking break is of course mobilization for WWI and WWII—5 million soldiers and over 15 percent of population in 1918.
Political scientists have tended to advance the idea that era of mass mobilization is a consequence of nationalism and the extension of political rights.

We argue that states will only raise mass armies if they have the means to transport, supply, and command the armies that they raise and if large armies constitute the most effective means for achieving their security objectives.
Political scientists have tended to advance the idea that era of mass mobilization is a consequence of nationalism and the extension of political rights. We argue that states will only raise mass armies if they have the means to transport, supply, and command the armies that they raise and if large armies constitute the most effective means for achieving their security objectives.